Кто изобрел двигатель внутреннего сгорания на бензине

Содержание

Первый двигатель внутреннего сгорания: с чего все началось

Разработка первого двигателя внутреннего сгорания длилась почти два века, пока автомобилисты смогут узнать прототипы современных моторов. Все начиналось с газа, а не с бензина. В число людей, которые приложили свою руку к истории создания, являются — Отто, Бенц, Майбах, Форд и другие. Но, последние научные открытия перевернули весь автомир, поскольку отцом первого прототипа считался совсем не тот человек.

Первый ДВС

Как двигатель Рудольфа Дизеля изменил мир

Немецкая марка с портретом Рудольфа Дизеля

В 10 часов вечера 29 сентября 1913 года Рудольф Дизель отправился в свою каюту на пароходе "Дрезден", шедшем из бельгийского Антверпена через Ла-Манш в Лондон. Его пижама была разложена на кровати, но он так в нее и не переоделся.

Изобретатель двигателя, названного его именем, размышлял о своих больших долгах и процентах по ним, которые он уже не мог выплачивать. В его дневнике этот день – 29 сентября – был помечен зловещим крестом: "X".

Перед тем, как отправиться на пароход, 55-летний Дизель собрал все наличные деньги и сложил их в сумку вместе с документами, из которых было ясно, насколько отчаянным оказалось его финансовое положение. Он отдал сумку ничего не подозревавшей жене и велел открыть ее не раньше, чем через неделю.

Дизель вышел на палубу. Снял плащ и шляпу. Аккуратно сложил их на палубе. Посмотрел на воду. И прыгнул за борт.

Или не прыгнул? Любители конспирологии считают, что ему "помогли".

Но кто мог быть заинтересован в смерти бедного изобретателя? Есть две версии.

Для того, чтобы понять контекст, вернемся на тридцать лет назад, в 1872 год. Паровые двигатели уже широко применяются в промышленности, по железным дорогам бегают все более многочисленные паровозы, но в городах весь транспорт – по-прежнему на гужевой тяге.

Эволюция двигателей- как было тогда, и как есть сейчас

История развития бензиновых двигателей внутреннего сгорания

Несмотря на то, что первые двигатели внутреннего сгорания были сконструированы более 140 лет назад, у современных автомобильных моторов по-прежнему чрезвычайно много общего с теми первыми агрегатами, которые по своему принципу действия напоминают миниатюрные электростанции.

Как известно, топливом для первого двигателя был газ, воспламеняющийся в специальной камере внутреннего сгорания. Как и тогда, в сегодняшних моторах пары бензина, предварительно смешанные с воздухом, поджигаются в камере внутреннего сгорания при помощи искры. Таким образом очевидно, что основной принцип автомобильного двигателя остался неизменным. А вот что касается энергоэффективности и экологичности современных моторов, то они в значительной степени эволюционировали, став более дружелюбными и безопасными для окружающей среды при существенном росте эффективности.

Кто придумал двигатель внутреннего сгорания? Ключевые фигуры

Более двух веков прогресс человечества неразрывно связан с различными машинами, особенно с транспортными средствами. Которые помогали быстро перемещать товары от поставщиков к потребителям. Те, кто придумал двигатель внутреннего сгорания (ДВС), внесли весомый вклад в развитие человеческой цивилизации. Поскольку автомобили, корабли и самолеты до сих пор остаются главным двигателем в истории человечества. Первым коммерчески успешным ДВС считается двигатель французского изобретателя из Бельгии Жана Этьена Ленуара.

Первый шаг

Японские символы самураев: фото, значение и описание Вам будет интересно: Японские символы самураев: фото, значение и описание

В конце 18 века французский механик Филипп Лебон впервые получил светильный газ и запатентовал способ его получения при пиролизе древесины или угля. Смесь метана, водорода и угарного газа стала широко использоваться для освещения улиц европейских городов. Изобретатели многих стран мира взялись за конструирования двигателя, использующего это относительно недорогое и эффективное топливо.

двигатель 1853 года

Тогда многие инженеры понимали, что эффективность двигателя повысится, если топливо не сжигать в топке, как в паровом двигателе. А непосредственно в цилиндре.

Однако тем, кто придумал первый двигатель внутреннего сгорания, стал все тот же Филипп Лебон. В 1801 году, через два года после открытия светильного газа, Лебон получил патент на двигатель, работающий на смеси сжатого газа и воздуха. Они накачивались в рабочий цилиндр и там воспламенялись. Однако изобретение осталось только на бумаге, в 1804 году Лебон был убит. Он остался одним из многих инженеров в истории создания двигателя внутреннего сгорания, кто придумал, но не реализовал на практике свое изобретение.

Пробный вариант

Первый двигатель внутреннего сгорания (ДВС) создал французский изобретатель Ф.И. де Ривас в 1807 г. Смесь воздуха и водорода в рабочем цилиндре зажигалась электрической искрой от батареи Вольта, после подрыва смесь расширялась, создавая высокое давление в цилиндре и подбрасывая поршень. Отработанные газы выпускались, образуя под поршнем вакуум. Под воздействием давления атмосферы и своего веса поршень падал, возвращаясь в исходное положение, чтобы повторить цикл. Де Ривас использовал свой ДВС как привод передних колёс повозки. Но из-за низкой эффективности его двигатель не нашёл спроса. Впоследствии идеи де Риваса легли в основу дальнейших разработок ДВС.

Что такое ДВС

ДВС — двигатель внутреннего сгорания. Именно так, и ни как иначе, расшифровывается данная аббревиатура. Ее часто можно встретить на разных автомобильных сайтах, а также форумах, но как показывает практика, не все люди знают этому расшифровку.

Что такое ДВС в автомобиле? — Это силовой агрегат, который приводит в действие движение колес. Двигатель внутреннего сгорания — это сердце любого автомобиля. Без этой конструктивной детали машину нельзя назвать авто. Именно этот агрегат приводит все в действие, все остальные механизмы, а также электронику.

Мотор состоит из ряда конструктивных элементов, которые могут отличаться в зависимости от числа цилиндров, системы впрыска и других немаловажных элементов. У каждого производителя свои нормы и стандарты силового агрегата, но все они между собой похожи.

Спрос на замену лошади

Мы быстро, просто и понятно объясняем, что случилось, почему это важно и что будет дальше.

Конец истории Подкаст

Осенью того года эпизоотия конского гриппа парализовала города Соединенных Штатов. Не на чем было подвозить товары в лавки, не на чем вывозить мусор.

В полумиллионном городе в те времена могло быть около ста тысяч лошадей. Каждая из них ежедневно орошала улицы 15 килограммами навоза и 4 литрами мочи.

Города остро нуждались в недорогом, надежном и небольшом двигателе, который заменил бы конную тягу.

Одним из кандидатов на эту роль был паровой двигатель: автомобили на паровой тяге конструировались один за другим.

Вторым был двигатель внутреннего сгорания. Первые его модели работали на газе, на бензине, даже на порохе. Но в семидесятых годах XIX века, когда Рудольф Дизель был студентом, оба этих типа двигателей были ужасно неэффективны, с КПД всего лишь около 10%.

Поворотным пунктом в жизни молодого Дизеля стала лекция о термодинамике в Королевском Баварском политехническом институте в Мюнхене, на которой он услышал, что двигатель внутреннего сгорания, преобразующий всю энергию тепла в полезную работу, теоретически возможен.

Автор фото, Alamy

Схема-рисунок двигателя внутреннего сгорания, изобретенного Рудольфом Дизелем в 1887 году

Дизель взялся за претворение теории в жизнь. И потерпел неудачу. КПД его первого двигателя составлял всего лишь 25%. КПД лучших из современных дизелей – более 50%.

Но даже 25% – это было в два с лишним раза лучше, чем у конкурентов.

В бензиновых двигателях внутреннего сгорания в цилиндре сжимается смесь воздуха и паров бензина, которая затем поджигается электрической искрой. В двигателе Дизеля сжимается только воздух, при этом его температура повышается настолько, что ее достаточно для воспламенения впрыскиваемого топлива.

При этом в дизеле чем сильнее сжатие, тем меньше нужно топлива, тогда как в двигателе с зажиганием слишком сильное сжатие приводит к сбою в работе.

Карбюратор и инжектор

Одним из ключевых элементов в конструкции бензиновых моторов до последнего времени являлся карбюратор. Подобное техническое решение для автомобильных моторов можно встретить еще и сегодня, заглянув под капот некоторых отечественных машин, сконструированных в ХХ веке.

Как показали исследования, модернизация карбюратора, являющегося устройством, необходимым для качественного и правильного смешивания топлива и воздуха, зашла в тупик. Повышать эффективность карбюраторов больше уже было невозможно, ввиду чего инженеры в сфере автомобильной индустрии стали один за другим отказываться от применения карбюраторов на моторах своих автомобилей.

Кроме того, карбюраторные моторы являются весьма не экологичными, что в свете тезисов о защите окружающей среды стало дополнительным стимулом отказа от карбюраторов. Стоит отметить, что долгое время работа двигателя внутреннего сгорания предполагала смазку трущихся внутренних частей мотора посредством добавления моторного масла непосредственно в бензин. Здесь было чрезвычайно важно соблюсти оптимальные пропорции, позволяющие обеспечивать необходимый эффект смазки, вместе с тем допуская минимальное количество нагара, образующегося после выгорания топливной смеси, сдобренной моторным маслом. Нарушение технологии смешивания бензина и масла влекло за собой появление густого сизого дыма позади даже вполне исправной машины.

Первые моторы, оснащаемые системой топливного впрыска, увидели свет в конце ХIХ столетии. В то время, на заре прошлого века, когда подавляющее количество автомобилестроителей работали над усовершенствованием карбюратора, один из немецких инженеров впервые получил патент на систему впрыска топлива в камеру сгорания автомобильного цилиндра. Однако надежность и практическая безотказность карбюраторных моторов не дала возможности бурному развитию инжекторных моторов, ввиду чего говорить о первых серьезных попытках конструкторов двигателей запустить систему топливного впрыска в серийное производство стало возможным лишь применительно к периоду начала Первой мировой войны. Но именно немецкие военные самолеты стали первыми серийными аппаратами, на чьих моторах карбюраторы уступили место впрыску. А вот советская, английская и американская авиация получила на вооружение самолеты с инжекторными моторами лишь к концу войны. Правда, тогда это была система механического топливного впрыска, по своей эффективности мало чем напоминающая современные электронные системы.

В отличие от карбюраторных моторов, двигатели, оснащенные системой топливного впрыска, отличались большей мощностью и тягой благодаря тому, что для каждого цикла сгорания количество и состав смеси были точно отмерены.

Что касается автомобилестроения, то здесь, несмотря на меньшую эффективность карбюратора, карбюраторные моторы оставались практически безальтернативными еще очень долгое время.

Леонардо и здесь руку приложил

До 2016 года основателем первого двигателя внутреннего сгорания считался Франсуа Исаак де Риваз. Но, историческая находка, сделанная английскими учеными, перевернула весь мир. При раскопках вблизи одного из французских монастырей, были найдены чертежи, которые принадлежали Леонардо да Винчи. Среди них был чертеж двигателя внутреннего сгорания.

Конечно, если смотреть на первые двигатели, которые создавали Отто и Даймлер, то можно найти конструктивные сходства, а вот с современными силовыми агрегатами их уже нет.

Легендарный да Винчи опередил свое время почти на 500 лет, но поскольку был скован технологиями своего времени, а также финансовыми возможностями, так и не смог сконструировать мотор.

Детально исследовав чертеж, современные историки, инженеры и автоконструкторы с мировым именем, пришли к выводу, что данный силовой агрегат мог работать и довольно продуктивно. Так, компания Форд занялась разработкой прототипа двигателя внутреннего сгорания, основываясь на чертежах да Винчи. Но, эксперимент удался только наполовину. Двигатель завести не удалось.

Но, некоторые современные доработки позволили, все-таки дать жизнь силовому агрегату. Он так и остался экспериментальным прототипом, но кое-что компания Форд, все-таки почерпнула для себя — это размер камер сгорания для легковых автомобилей В-класса, который составляет 83,7 мм. Как оказалось — это идеальный размер для сгорания воздушно-топливной смеси для такого класса моторов.

ДВС Леонардо да Винчи

История происхождения двигателя внутреннего сгорания

История создания двигателя внутреннего сгорания началась более 300 лет назад, когда первый примитивный чертеж сделал Леонардо ДаВинчи. Именно его разработка положила основу созданию двигателю внутреннего сгорания, устройство которого можно наблюдать на любой дороге.

В создание различных ДВС внесли наибольший вклад такие инженеры как Джон Барбер (изобретение газовой турбины в 1791), Роберт Стрит (патент на двигатель на жидком топливе, 1794 год), Филипп Лебон (открытие светильного газа в 1799, первый газовый двигатель в 1801), Франсуа Исаак де Риваз (первый поршневой двигатель, 1807), Жан Этьен Ленуар (газовый двигатель Ленуара, 1860), Николаус Отто (двигатель с искровым зажиганием и сжатием смеси в 1861 году, четырёхтактный двигатель в 1876-м), Рудольф Дизель (двигатель Дизеля на угольной пыли, 1897, двигатель на керосине с КПД 25% в этом же году), Готлиб Даймлер и Вильгельм Майбах, Огнеслав Степанович Костович (бензиновый мотор с карбюратором, 1880-е), Густав Васильевич Тринклер (дизельные двигатели на жидком топливе, 1899), Раймонд Александрович Корейво, Фридрих Артурович Цандер, Вернер фон Браун (реактивные и турбореактивные двигатели, начиная с 1930-х и заканчивая Лунной программой)

Конвейер Генри Форда

Первым, кто внедрил массово двигатели внутреннего сгорания — был легендарный Генри Форд, чьи автомобили до сих пор пользуются огромной популярностью. Он же первый выпустил книгу «Двигатель: его устройство и схема работы».

Конвейер Генри Форда

Генри Форд был первым, кто начал вычислять такой полезный коэффициент, как КПД двигателя внутреннего сгорания. Этот легендарный человек считается прародителем автомобилестроения, а также части авиапромышленности.

В современном мире, нашлось широкое применение ДВС. Они оснащаются не только в автомобили, но авиация, а благодаря простоте конструкции и обслуживания устанавливается на многие виды транспортных средств и как электрогенераторы переменного тока.

Газовый двигатель Лебона

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения. Изобретатели взялись за конструирование двигателей, способных заменить паровую машину, при этом топливо сгорало бы не в топке, а непосредственно в цилиндре двигателя.

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он был убит, не успев воплотить в жизнь своё изобретение.

Ненадежные моторы

Все автомобилисты знают о главном свойстве машин с дизельным мотором: они обычно дороже стоят, зато дешевле в эксплуатации.

К несчастью для Рудольфа Дизеля, его первые модели при всем их высоком КПД отличались ненадежностью. Недовольные покупатели завалили его требованиями о возврате денег. Это и загнало изобретателя в финансовую яму, из которой он не смог выбраться.

Но он продолжал работать над своим двигателем и постепенно совершенствовал его.

Выявились другие преимущества двигателя Дизеля. Он может работать на более тяжелом, чем бензин, топливе – солярке, или, как сейчас его чаще называют, дизтопливе. Оно дешевле бензина и к тому же менее интенсивно испаряется, поэтому менее взрывоопасно.

В силу этого дизели стали особенно популярны у военных. Уже в 1904 году двигатели Рудольфа Дизеля были поставлены на французских подводных лодках.

Автор фото, Getty Images

Машины с дизельным двигателем дороже при покупке, но дешевле в эксплуатации

Здесь лежат корни первой конспирологической версии смерти Рудольфа Дизеля.

Европа, 1913 год, большая война все ближе и все неотвратимее – а тут немец, изобретатель нового двигателя, преследуемый финансовыми проблемами, отправляется в Британию. Одна газета так и написала в заголовке: "Изобретателя сбросили в море, чтобы предотвратить продажу патентов британскому правительству".

Коммерческий потенциал изобретения Дизеля, однако, стал раскрываться только после Первой мировой. Первые дизельные грузовики появились в 1920-х годах, железнодорожные локомотивы – в 1930-х. К 1939 году уже четверть морских грузов в мире перевозили суда с дизельными установками.

После Второй мировой войны были созданы еще более мощные дизельные моторы, которые позволили строить суда все большего водоизмещения и все более экономно перевозить грузы. На топливо приходится около 70% себестоимости морских перевозок.

1962 год: турбонаддув

Турбокомпрессор является одним из самых драгоценных камней в двигателях внутреннего сгорания. Дело в том, что турбина, которая подает больше воздуха в цилиндры двигателя, когда-то позволяла

12-цилиндровым истребителям во время Второй мировой войны взлетать выше, лететь быстрее, дальше и меньше расходовать дорогое топливо.

В итоге, как и многие технологии, система турбин из авиатехники пришла в автопромышленность. Так, в 1962 году в мире были представлены первые серийные автомобили с турбокомпрессором. Ими стали BMW 2002, или Saab 99.

После чего компания General Motors попыталась развить дальше эту технологию турбирования двигателей внутреннего сгорания на легковых автомобилях. Так, на автомобиле Oldsmobile Jetfire появилась технология «Turbo Rocket Fluid», которая помимо турбины использовала резервуар с газом и дистиллированную воду для увеличения мощности двигателя. Это была настоящая фантастика. Но затем компания GM отказалась от этой сложной и дорогой, а также опасной технологии. Все дело в том, что уже к концу 1970-х годов такие компании, как MW, Saab и Porsche, заняв первые места во многих мировых автогонках, доказали ценность турбин в автоспорте. Сегодня же турбины пришли на обычные автомобили и в ближайшем будущем отправят обычные атмосферные моторы на пенсию.

Рециркуляция выхлопных газов

Может показаться, что усовершенствование автомобильных двигателей происходило недостаточно быстро, однако этот вывод преждевременен и не справедлив. Одной из первых деталей, играющих ключевую роль в работе мотора, стал клапан рециркуляции отработанных газов. Система рециркуляции выхлопа является неотъемлемой частью силовых агрегатов подавляющего числа современных автомобилей. Эта система позволяет максимально эффективно задействовать топливо, сжигая его в камерах цилиндров с наибольшим эффектом. Благодаря процессу рециркуляции продуктов сгорания топлива отработанные газы вновь поступают в двигатель, где опять участвуют в процессе воспламенения и сгорания топливной смеси. Таким образом достигается не только более полное сжигание бензина, но и уменьшается количество вредных выбросов, образующихся в результате работы двигателя внутреннего сгорания.

Стоит отметить, что в современных моторах клапан рециркуляции отработанных газов позволяет сэкономить до 25% топлива, не сгоревшего при первоначальном воспламенении рабочей смеси, которое в отсутствии системы рециркуляции попросту вылетело бы в атмосферу. Таким образом, появившись впервые в середине прошлого века, система рециркуляции выхлопных газов стала обязательной частью для выпускаемых ныне моторов.

Система электронного зажигания

Другим важным шагом в процессе эволюции автомобильных моторов можно назвать разработку и применение электроники в системе зажигания. Довольно продолжительное время система зажигания автомобильного двигателя имела контактную конструкцию. Однако при такой конструкции мотора от правильно выставленного опережения зажигания в полной мере зависела эффективность работы всего агрегата.

Электроника, пришедшая на смену контактному зажиганию, позволила точно выверять момент воспламенения топливной смеси, исключив ее преждевременное возгорание относительно хода поршня. Впрочем, весьма продолжительное время электронное зажигание применялось только для некоторых карбюраторных моторов будучи своеобразной опцией для дорогих моделей машин, предназначенной для повышения отдачи двигателя. Но поскольку используемые устройства требовали сложных настроек и специального оборудования, электронные системы зажигания долгое время оставались редкостью, тогда как подавляющее число автомобилистов продолжали сжигать миллионы тонн топлива ввиду неэффективной работы карбюраторных моторов, оснащаемых морально-устаревшей системой зажигания контактного типа.

Первый коммерческий успех

Двигатель Ленуара

В последующий период механики многих европейских стран пытались создать нормально работающий образец ДВС на светильном газе. Однако все эти усилия долгое время не приводили к появлению двигателя, который мог бы конкурировать по эффективности с паровой машиной.

Тем, кто придумал двигатель внутреннего сгорания, добившегося коммерческого успеха, стал бельгийский механик французского происхождения Жан Этьен Ленуар. Он первым решил воспламенять газовоздушную смесь посредством электрической искры. Возможно, такая идея пришла к нему, потому что инженер работал на гальваническом заводе. Однако успех пришел к нему не сразу. Первая модель проработала совсем немного и остановилась, потому что из-за большой температуры поршень расширился, и его заклинило в цилиндре. Ленуар дополнил свой ДВС водяной системой охлаждения. А после второго неудачного запуска и сконструировал систему смазки. К 1864 году он продал больше 1400 своих двигателей и разбогател.

Двигатель Ленуара

В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Мощность первого практически пригодного двухтактного газового ДВС, сконструированного Ленуаром в 1860 году, составляла 8,8 кВт (11,97 л. с.). Двигатель представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника и золотниковым газораспределением. В конструкции двигателя появился кривошипно-шатунный механизм. КПД двигателя не превышал 4,65 %. Несмотря на недостатки, двигатель Ленуара получил некоторое распространение. Использовался как лодочный двигатель.

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за заедания поршня. Ленуар дополнил свою конструкцию системой смазки, только тогда двигатель начал работать. Таким образом, именно Ленуар впервые решил проблемы смазки и охлаждения ДВС. Двигатель Ленуара имел мощность около 12 л.с. с КПД около 3,3%.

К 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Николаусом Отто.

Первая победа Отто

Недостатки ДВС Ленуара учёл немецкий конструктор Н.А. Отто при создании своего двухтактного двигателя. Сделанный им в 1864 г. ДВС тоже работал на смеси воздуха со светильным газом. Отто поджигал смесь не электрической искрой, а пламенем газовой горелки, что было надёжнее при тогдашнем уровне развития электротехники. ДВС Отто совершал один рабочий ход. Сделав цилиндр вертикальным, Отто заставил поршень двигаться вниз без помощи давления газов, только под воздействием своего веса и давления атмосферы. Это позволило его ДВС при вдвое меньшем расходе топлива развивать мощность как у ДВС двойного действия. ДВС Отто оказался в 4-5 раз экономичнее двигателя Ленуара. Первые ДВС Отто широко использовались как приводы для типографских машин, грузовых лифтов-подъёмников, токарных и ткацких станков, прядильных машин и прочего оборудования.

Двухтактные ДВС, работающие по принципу ДВС Отто 1864 г., и сейчас используются как приводы сенокосилок и бензопил, в лодочных и мотоциклетных моторах.

Николаус Аугуст Отто

Принцип работы двигателя

Как работает двигатель автомобиля? — Этим вопросом задаются многие автомобилисты. Постараемся дать максимально полный и сжатый ответ на этот вопрос. Принцип работы двигателя внутреннего сгорания основан на двух факторах: впрыске и моменте сжатия. Именно основываясь на этих действиях мотор, приводит все в действие.

Рабочий цикл четырёхтактного бензинового двигателя

Если рассматривать, как работает двигатель внутреннего сгорания, то стоит понимать, что существуют такты, которые разделяют агрегаты на однотактный, двухтактный и четырехтактный. В зависимости от того, куда устанавливается ДВС, так и различают такты.

Рабочий цикл четырёхтактного бензинового двигателя

Современные автомобильные двигатели оснащаются четырехтактными «сердцами», которые идеально сбалансированные и отлично работают. А вот однотактные и двухтактные моторы обычно устанавливаются на мопеды, мотоциклы и прочую технику.

  1. Топливо попадает в камеру сгорания, через систему впрыска.
    дают искру и топливно-воздушная смесь воспламеняется.
  2. Поршень, который находится в цилиндре, уходит вниз под давлением, чем приводит в движение коленчатый вал.
    передает движение через сцепление и коробку передач на ведущие валы, которые в свою очередь, приводят в действия колеса.

1964 год: роторный двигатель

Единственным двигателем, который по-настоящему смог сломать форму обычного двигателя внутреннего сгорания, стал роторный чудо-мотор инженера Феликса Ванкеля. Форма его ДВС ничего общего не имела с привычным нам двигателем. Роторный мотор представляет собой треугольник внутри овала, вращающийся с дьявольской силой. По своей конструкции роторный двигатель легче, менее сложный и более крутой, чем обычный двигатель внутреннего сгорания с поршнями и клапанами.

Первыми роторные двигатели на серийных авто начали использовать компания Mazda и ныне уже не существующий немецкий автопроизводитель NSU.

Самым же первым серийным автомобилем с роторным двигателем Ванкеля стал NSU Spider, который начал выпускаться в 1964 году.

Затем компания Mazda наладила производство своих автомобилей, оснащенных роторным мотором. Но в 2012 году она отказалась от использования роторных двигателей. Последней с роторным мотором стала модель RX-8.

Но недавно, в 2015 году, Mazda на Токийском автосалоне представила концепт-кар RX-Vision-2016, который использует роторный мотор. В итоге в мире начали появляться слухи, что японцы планируют в ближайшие годы возродить роторные автомобили. Предполагается, что в настоящий момент специализированная группа инженеров Mazda где-то в Хиросиме сидит за закрытыми дверями и создает новое поколение роторных моторов, которые должны стать основными двигателями во всех будущих новых моделях Mazda, открыв новую эру возрождения компании.

Применение обедненной топливной смеси

Вариантом повышения эффективности бензиновых двигателей стал переход некоторых разработчиков на использование обедненной топливной смеси. Инженерами было изменено привычное соотношение топливной смеси. По такой технологии во второй половине 70-х годов стали строить свои моторы инженеры Honda, Mitsubishi, Nissan, а также некоторых других производителей. Но поскольку моторы, разработанные под применение обедненной смеси, требовали установки сложнейших и дорогостоящих каталитических нейтрализаторов, подобные агрегаты не прижились и уже к началу 90-х годов практически полностью перестали производиться.

Отец основатель автоиндустрии

Но, как не крути, самый большой взнос в развитие автомобилестроения и автодвигательных разработок внес американский конструктор, инженер и просто легенда — Генри Форд. Его лозунг: «Автомобиль для всех» нашел признание у простых людей, что и привлекло их. Основав в 1903 году компанию «Форд», он не только принялся за разработку нового поколения двигателей для своего автомобиля Форд А, но и дал новые рабочие места простых инженерам и людям.

Форд за рулем своего автомобиля

В 1903 году против Форда выступил Селден, который утверждал, что первый использует его разработку двигателя. Судебный процесс длился целых 8 лет, но при этом, ни один из участников, так и не смог выиграть процесс, поскольку суд решил, что права Селдена не нарушены, а Форд использует свой тип и конструкцию мотора.

В 1917 году, когда США вступила в первую мировую войну, компания Форд начинает разработку первого тяжелого двигателя для грузовых автомобилей с повышенной мощностью. Так, к концу 1917 года Генри представляет первых бензиновый 4-х тактный 8-ми цилиндровый силовой агрегат Форд М, который начала устанавливаться на грузовые автомобили, а в последствие и во время 2-й мировой на некоторые грузовые самолеты.

Когда другие автомобилестроители переживали не самые лучшие времена, то компания Генри Форда процветала и имела возможность разрабатывать все новые варианты двигателей, которые нашли применение среди широкого автомобильного ряда автомобилей Форд.

Первый двигатель в массовом производстве

Двигатель Отто

Среди тех, кто придумал двигатель внутреннего сгорания – немецкий инженер Николас Отто. Он усовершенствовал машину, работающую на светильном газе, и в 1864 году получил патент на свою модель ДВС. Которая была продана в количестве более 5000 штук.

В 1877 году Отто получил патент на двигатель с четырехтактным циклом. Этот принцип лежит и сейчас в основе работы большой части газовых и бензиновых двигателей. В течение следующих двадцати лет было выпущено более 42 000 таких ДВС. Однако использование светильного газа сильно сужало возможности их использования.

Четыре такта успеха

Настоящий прорыв в создании ДВС Отто совершил в 1876 г. В новом двигателе Отто вернулся к горизонтальной конструкции. Для увеличения мощности ДВС Отто решил перед воспламенением сжать топливную смесь, а для этого цикл работы ДВС пришлось увеличить до 4 тактов — 4 ходов поршня, и этот двигатель стал называться четырёхтактным ДВС.

Мощный четырёхтактный ДВС Отто вытеснил все предыдущие модели ДВС — его схема стала образцом для создания всех последующих ДВС вплоть до нашего времени и открыла возможность применения ДВС на транспорте.

Четырёхтактный цикл работы ДВС Отто 1876 г.

Как устроен ДВС

  1. Впрыск. Поршень делает движение вниз, при этом открывается впускной клапан головки блока соответствующего цилиндра и камера сгорания наполняется воздушно-топливной смесью.
  2. Сжатие. Поршень движется в ВТМ и в самой верхней точке происходит искра, которая влечет за собой воспламенение смеси, которое находится под давлением.
  3. Рабочий ход. Поршень движется в НТМ под давлением воспламененной смеси и образовавшимся выхлопным газам.
  4. Выпуск. Поршень движется вверх, открывается выпускной клапан и он выталкивает выхлопные газы с камеры сгорания.

Арахис против нефти

В последнее время в мире возрождается интерес к дизельному биотопливу. Оно меньше загрязняет атмосферу, но есть и проблема: оно занимает сельскохозяйственные угодья, а это ведет к повышению цен на продовольствие.

Во времена Рудольфа Дизеля это не выглядело большой проблемой: население Земли тогда было гораздо меньше, а климатические изменения не сильно беспокоили людей. Поэтому Рудольф Дизель, наоборот, мечтал, что его двигатель поможет развиваться бедным, аграрным странам.

Насколько иначе сейчас выглядел бы мир, если бы самыми ценными землями считались не те, где качают нефть, а те, где хорошо растет арахис? Мы можем только гадать.

Точно так же, как мы можем только гадать, что же в точности случилось с Рудольфом Дизелем.

Его тело было найдено в море рыбаками через десять дней. К тому времени оно настолько разложилось, что рыбаки не стали брать его на борт, но забрали личные вещи – кошелек, перочинный нож, футляр для очков.

Когда рыбаки добрались до берега, эти вещи опознал младший сын Дизеля. А тело изобретателя навсегда осталось в морских глубинах.

Электронный топливный впрыск

Пожалуй, наиболее серьезным шагом в процессе эволюции автомобильных моторов является разработка системы электронного топливного впрыска. По сравнению с механическими аналогами, электронные системы позволяли гораздо точнее контролировать количество смеси, подаваемой в камеру сгорания. Первоначальные технологии предусматривали одноточечную конструкцию электронного впрыска, на смену которой пришли системы многоточечного и даже многопортового впрыска. Впрочем, многопортовый впрыск сегодня практически не используется ввиду сложности и дороговизны конструкции.

Сегодня в конструкции инжекторных моторов повсеместно применяются датчики кислорода, именуемые лямбда-зондами. Такие датчики устанавливаются в системе выпуска отработанных газов, выполняя функцию контроля эффективности сгорания топлива в каждом цикле. Многие автомобили располагают двумя и более кислородными датчиками, устанавливаемыми до и после каталитического нейтрализатора. При всех плюсах, лямбда-зонды обладают существенным недостатком, особенно заметным в российских условиях эксплуатации автомобилей. Эти устройства чрезвычайно чувствительны к качеству топлива и при использовании некачественного бензина могут выйти из строя уже после нескольких тысяч пробега.

Помимо двигателей, работающих по принципу цикла Отто, в мире современного автомобилестроения находят применение и другие технологии. Так, в качестве альтернативы можно назвать моторы, работающие по принципу цикла Аткинсона. Правда, такие двигатели не столь распространены ввиду меньшей мощности при прочих равных характеристика. Как правило, бензиновые двигатели, работающие по циклу Аткинсона, используются в гибридных силовых установках.

Сегодня, как и сто лет назад, конструкторы продолжают трудиться над повышением эффективности автомобильных двигателей. Так, уже возможно совсем скоро в свечах зажигания будут использоваться лазерные технологии, а для изготовления дроссельной заслонки будут применяться альтернативные материалы.

1981 год: технология дезактивации цилиндров двигателя

Идея проста. Чем меньше цилиндров работает в двигателе, тем меньше расход топлива. Естественно, что двигатель V8 намного прожорливее, чем четырехцилиндровый. Также известно, что при эксплуатации автомобиля большую часть времени люди используют машину в городе. Логично, что если автомобиль оснащен 8- или 6-цилиндровыми моторами, то при поездках в городе все цилиндры в двигателе в принципе не нужны. Но как можно просто превратить 8-цилиндровый мотор в четырехцилиндровый, когда вам не требуется задействовать для мощности все цилиндры? На этот вопрос в 1981 году решила ответить компания Cadillac, которая представила двигатель с системой дезактивации цилиндров 8-6-4. Этот мотор использовал электромагнитные управляемые соленоиды для закрытия клапанов на двух или четырех цилиндрах двигателя.

Эта технология должна была повысить эффективность двигателя, например, при движении по шоссе. Но последующая ненадежность и неуклюжесть этого мотора с системой дезактивации цилиндров напугала всех автопроизводителей, которые в течение 20 лет боялись использовать эту систему в своих моторах.

Но теперь эта система снова начинает завоевывать автомир. Сегодня уже несколько автопроизводителей используют эту систему на своих серийных автомобилях. Причем технология зарекомендовала себя очень и очень хорошо. Самое интересное, что эта система продолжает развиваться. Например, уже скоро эта технология может появиться на четырехцилиндровых и даже на трехцилиндровых моторах. Это фантастика!

Изобретение Дизеля

Дизельный двигатель 1906 года

В начале 19 века было сформулировано описание процесса Карно. Оно утверждало, что в тепловой машине быстрое изменение объема газа (быстрое сжатие) позволит разогреть рабочее тело до температуры горения.

В 1890 году Рудольф Дизель изобрел способ практического использования цикла Карно. Он стал первым, кто придумал дизельный двигатель внутреннего сгорания. В течение нескольких лет немецкий инженер запатентовал несколько вариантов конструкции. Первая, практически работающая модель, была собрана в 1897 году и названа дизель-мотором. С 1889 года начато массовое производство дизельных двигателей.

Развитие идеи

Производством всех ДВС Отто занималась компания «Ланген, Отто и Розен», созданная в 1869 г. Отто совместно с немецкими предпринимателями Э. Лангеном и Л. Розеном. Современные четырёхтактные ДВС сохранили принципиальную схему Отто, но топливо в них поджигается искрой от электрической свечи. Для увеличения мощности ДВС повышали объём его цилиндра, чтобы большим объёмом топлива усилить мощь его расширения. Но увеличение цилиндра не могло быть бесконечным, и тогда придумали усиливать двигатель путём увеличения числа цилиндров, поршни которых крутили один рабочий вал двигателя. Первые двухцилиндровые ДВС появились в конце XIX в., а четырёхцилиндровые — в начале XX в. Сейчас встречаются шести — , восьми — и 20 — цилиндровые ДВС. Светильный газ был довольно дорогим топливом, и в Европе, и в России его производили не так много. В поисках нового вида топлива для ДВС обратили внимание на другие вещества, содержащие углеводороды — продукты нефтепереработки.

Сотрудники компании Отто Г. Даймлер и В. Майбах в 1883 г. создали первый бензиновый ДВС, который в 1885 г. установили на первом мотоцикле, а в 1886 г. — на первом автомобиле.

Четырёхтактный цикл работы современного одноцилиндрового ДВС

Однако бензин при испарении плохо смешивался с воздухом, реакция при возгорании протекала неравномерно, и бензиновые ДВС, работая ненадёжно, не могли вытеснить газовые ДВС. Выход нашёл венгерский инженер Д. Банки — в 1893 г. он придумал устройство для распыления бензина в воздухе — карбюратор с жиклёром. Бензиновая взвесь, равномерно смешанная с воздухом, поступала в цилиндр, где при зажигании быстро превращалась в газовую смесь, обеспечивая хорошее протекание реакции и мощное расширение при взрыве. В России первый бензиновый двигатель с карбюратором сконструировал в 1880-х гг. О. С. Костович. В 1897 г. немецкий инженер Р Дизель придумал дизельный двигатель, в котором топливо воспламенялось не от огня или электрической искры, а от высокой температуры, которая возникает при сильном сжатии воздуха. В России производство дизельных двигателей, усовершенствованных российским инженером Г. В. Тринклером, началось в 1899 г. Эти дизели устанавливали на стационарных машинах (станках и пр.).

Общее устройство ДВС

  1. Система впрыска.
  2. Блок цилиндров.
  3. Головка блока.
    .
  4. Система смазки.
  5. Система охлаждения.
  6. Механизм выхлопа отработанных газов.
  7. Электронную часть двигателя.
  • Коленчатый вал — вращается в самом сердце блока цилиндров. Приводит в работу поршневую систему. Он купается в масле, поэтому расположен ближе к поддону картера.
  • Поршневая система (поршни, шатуны, пальцы, втулки, вкладыши, бугеля и маслосъемные кольца).
  • Головка блока цилиндров (клапаны, сальники, распределительный вал и другие элементы ГРМ).
  • Масляный насос — циркулирует смазочную жидкость по системе.
  • Водяной насос (помпа) — обеспечивает циркуляцию охлаждающей жидкости.
  • Комплект газораспределительного механизма (ремень, ролики, шкивы) — обеспечивает правильность тактности. Ни один двигатель внутреннего сгорания, принцип работы которого основан на тактах, не может без этого элемента.
  • Свечи зажигания обеспечивают воспламенение смеси в камере сгорания.
  • Впускной и выпускной коллектор — принцип действия их основан на впуске топливной смеси и выпуску отработанных газов.

Реактивные, турбореактивные, газотурбинные, роторные ДВС

Начали широкое техническое развитие только в XX веке, ввиду сложностей технического характера для их конструирования, расчёта и изготовления. Хотя первые реактивные двигатели применяли в ракетах ещё задолго до этого, они имели ограниченное применение (пиротехника, военное дело) и были одноразовыми (разрушались вместе с ракетой). Космонавтика стала возможна лишь благодаря новым, усовершенствованным ДВС (многоступенчатые ракеты с мощными ЖРД).

Турбореактивные двигатели были анонсированы в условиях военных действий в гитлеровской Германии. Первые такие двигатели были установлены на реактивных самолётах, таких как Ме-262, беспилотный самолёт-снаряд Фау-1. Неоценимый вклад в этой области внёс Вернер фон Браун: разработанные им двигатели на новых ракетах Сатурн-5 позволили осуществить лунную программу. Без разработки столь мощных и надёжных ДВС выход за пределы атмосферы до сих пор является невозможным.

Газотурбинные двигатели, также СПГГ и дизель-молоты, имеют широкое распространение в промышленности, строительстве, флоте и военном деле. Начиная с середины XX века они получили широчайшее распространение.

Роторные ДВС одно время представлялись полноценным заменителем поршневых ДВС. Однако, несмотря на все усилия конструкторов фирмы Mazda и последующих, они не смогли уложиться в ужесточающиеся новые экологические нормы. Вместе с этим, осталась проблемой и долговечность таких двигателей, наряду с достаточно большой стоимостью изготовления и ремонта. Поэтому к настоящему времени такие двигатели почти полностью исчезли, их область применения занята поршневыми комбинированными и газотурбинными двигателями.

Принципы эксплуатации

Автомобильные двигатели эксплуатируются с разным ресурсом. Самые простые двигатели могут иметь технический ресурс 150000 км пробега при правильном техническом обслуживании. А вот некоторые современные дизельные двигатели, которые оснащаются на грузовики, могут выхаживать до 2 миллионов.

Устраивая конструкцию мотора, автопроизводители обычно делают упорство на надежность и технические характеристики силовых агрегатов. Учитывая современную тенденцию, многие автомобильные моторы рассчитаны на небольшой, но надежные срок эксплуатации.

Так, средняя эксплуатация силового агрегата легкового транспортного средства составляет 250 000 км пробега. А дальше, существует несколько вариантов: утилизация, контрактный двигатель или капитальный ремонт.

Техническое обслуживание двигателя

  • Замена моторного масла в соответствии с техническими картами и рекомендациями завода изготовителя. Конечно, каждый автопроизводитель ставит свои рамки замены смазочной жидкости, но эксперты рекомендуют менять смазку один раз на 10000 км — для бензиновых ДВС, 12-15 тыс. км — для дизеля и 7000-9000 км — для транспортного средства, работавшим на газу.
  • Замена фильтров масла. Проводится при каждом ТО по замене масла.
  • Замена топливных и воздушных фильтров — один раз на 20 000 км пробега.
  • Чистка форсунок — каждые 30 000 км.
  • Замена газораспределительного механизма — один раз на 40-50 тыс. км пробега или за необходимостью.
  • Проверка всех остальных систем проводится при каждом ТО, вне зависимости от давности замены элементов.

Доработка моторов

Тюнинг — доработка двигателя внутреннего сгорания по увеличению некоторых показателей, таких как мощность, динами, расход или другое. Это движение набрало всемирную популярность в начале 2000-х годов. Многие автолюбители начали самостоятельно экспериментировать со своими силовыми агрегатами и выкладывать фотоинструкции в глобальную сеть.

Сейчас можно встретить массу информации по проведенным доработками. Конечно, не весь этот тюнинг одинаково хорошо влияет на состояние силового агрегата. Так, стоит понимать, что разгон мощности без полного анализа и тюнинга может «угробить» ДВС, а коэффициент износа при этом увеличивается в несколько раз.

На основании этого, прежде чем проводить тюнинг мотора стоит все тщательно проанализировать, дабы не «попасть» на новый силовой агрегат» или, что еще хуже, не попасть в аварию, которая может стать для многих первой и последней.

Вывод

Конструкция и особенности современных моторов постоянно совершенствуются. Так, весь мир уже невозможно представить без выхлопных газов, машин и автосервисов. Работающий ДВС узнать легко по характерному звуку. Принцип работы и устройство двигателя внутреннего сгорания достаточно простое, если разобраться один раз.

А вот, что качается технического обслуживания, то здесь поможет смотреть техническую документацию. Но, если человек не уверен, что он может провести ТО или ремонт автомобиля своими руками, то стоит обратиться в автосервис.

Если Вы заметили ошибку, неточность или хотите дополнить материал, напишите об этом в комментариях, и мы исправим статью!

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий