Принцип работы подшипника качения

Виды подшипников: назначение, конструкция и таблица размеров

Все существующие виды подшипников представляют собой сборочный узел, функциональное назначение которого заключается в поддержке подвижной конструкции (оси, вала и т. п. ) с определенной степенью жесткости. Одновременно подшипник выступает в роли одного из элементов опоры, надежно фиксирующего положение в пространстве в совокупности с обеспечением качения, вращения или линейного перемещения.

Виды подшипников таблица

Краткие сведения из теории подшипников качения

Краткие сведения из теории подшипников качения

Подшипники качения – это опоры вращающихся или качающихся деталей, в которых элементами качения служат шарики или ролики (тела качения), установленные между кольцами (внутренним и наружным) и удерживаемые на определенном расстоянии друг от друга обоймой, называемой сепаратором.

В процессе работы одно из колец подшипника, как правило, неподвижно. В некоторых типах подшипников одно или оба кольца могут отсутствовать (в них тела качения опираются непосредственно на поверхность вала или корпуса). Ряд подшипников качения выпускается с уплотнениями.

В некоторых подшипниках качения может отсутствовать сепаратор. Посадочные поверхности внутреннего и наружного колец, как правило, гладкие цилиндрические, но имеются разновидности колец с буртиками, с канавками, с цилиндрическими или сферическими выемками, с отверстиями для подвода смазки, с конической расточкой, с эксцентриситетом посадочной поверхности и поверхности дорожки качения, с внутренним кольцом на разжимной втулке и т. п.

Типы и конструктивные особенности подшипников качения приведены в ГОСТ 3395-89, а также в нормалях подшипниковых заводов. Небольшая выборка из каталога подшипников качения приведена в приложении.

подшибник качения.png

Устройство однорядного радиального шарикоподшипника: 1 – наружное кольцо; 2 – шарик (тело качения); 3 – сепаратор; 4 – дорожка качения; 5 – внутреннее кольцо.

Подшипник качения и скольжения: разница, виды, сферы применения

Подшипники, предназначенные для конструкций с поворотными движениями, бывают двух типов – скольжения и качения. Отличаются они тем, каким образом передается сила между деталями – с помощью скользящих элементов или катящихся. Разберем подробнее оба случая.

Упорный подшипник

Выточки на валу, предназначенные для установки на них опорных элементов, называются шипами – отсюда и название «подшипник». Точность взаимного расположения деталей (например, шестерен) обеспечивается подшипниками, являющимися опорами валов, и, соответственно остальных элементов конструкции.Но иногда механизм испытывает более осевые, чем радиальные нагрузки, в связи с чем требуется установка деталей, обеспечивающих работу машины при больших осевых нагрузках. Места (выточки) на валу в таких случаях называются «пятой», а подшипник, воспринимающий осевые нагрузки вала – «подпятник». Но в последнее время в технической литературе это слово вышло из употребления, и подобные элементы называются упорными подшипниками.

Следует отметить, что практически все подшипники, используемые в технике, способны работать как при радиальной, так и при осевой нагрузках. Примером тому могут служить ступичные подшипники автомобилей. Но при большой осевой нагрузке вала применение радиально-упорных подшипников, в силу их конструкции, будет нецелесообразным, так как, в силу своей конструкции, они будут быстро изнашиваться и разрушаться.

Подшипники могут быть классифицированы в зависимости от трения и нагрузки, которую они воспринимают

  1. По типу трения подшипники делятся на: подшипники скольжения — опорная поверхность вала или осей скользит по рабочей поверхности подшипника; качения — трение скольжения заменяется трением качения с использованием промежуточных тел качения.
  2. В соответствии с воспринимаемой нагрузкой подшипники являются: радиальными — они воспринимают только радиальную нагрузку; осевые — воспринимают только осевую нагрузку; радиально-осевые — воспринимают радиальные и осевые нагрузки.
  3. По возможности следовать или нет наклону линии упругого вала — саморегулирующиеся или не саморегулирующиеся.

Подшипник. Виды и применение. Особенности и как выбрать

Подшипник – это сборный узел, применяемый в качестве поддерживаемой оборачиваемой опоры с минимальным трением и сопротивлением. Используется для установки на валы, оси и прочие подвижные детали. Обеспечивает вращение или качение, создавая при этом почти ничтожное сопротивление.

Подшипники качения. Общие сведения

Подшипники качения используются в качестве опор механического оборудования наиболее чаще, чем подшипники других типов.

Основа длительной эксплуатации подшипников качения заключается в правильном выборе типа подшипника для конкретных режимов и условий работы подшипниковых узлов оборудования. При этом необходимо учитывать множество факторов. Обоснованность выбора определяется знаниями типов существующих подшипников, их назначением, достоинствами и недостатками, кинематическими и силовыми характеристиками. Насколько точно эти факторы удается учесть, а тем более предвидеть на этапе проектирования подшипниковых узлов механического оборудования, настолько долговечными будут как подшипники, так и оборудование в целом. Однако, правомерна и обратная задача, связанная с неправильным выбором или неопределенностью режимов и условий эксплуатации подшипников качения.

Далее обобщены сведения о назначении и устройстве подшипников, достоинствах и недостатках подшипников качения и скольжения, классификации подшипников. Приведена сравнительная оценка эксплуатационных свойств подшипников качения. Рассмотрены основы расчета кинематических и силовых характеристик подшипников качения, а также их долговечности.

Видео

Классификация

Подшипники качения классифицируют по следующим основным признакам:

1. По форме тел качения: шариковые и роликовые, причем ролики могут быть цилиндрическими, коническими, игольчатыми, бочкообразными и витыми.

Форма тел качения подшипников.

2. По направлению воспринимаемой нагрузки:

  • радиальные – воспринимают преимущественно радиальную нагрузку, т.е. нагрузку, действующую перпендикулярно оси вращения подшипника;
  • радиально-упорные – воспринимают комбинированную нагрузку, т.е. нагрузку, одновременно действующую на подшипник в радиальном и осевом направлениях, причем преобладающей может быть, как радиальная, так и осевая нагрузки;
  • упорно-радиальные – воспринимают радиальную и осевую нагрузки, но радиальная нагрузка меньше осевой; упорные – воспринимают только осевую нагрузку, т. е. нагрузку, действующую вдоль оси вращения подшипника.

3. По числу рядов тел качения: однорядные, двухрядные, трехрядные, четырехрядные и многорядные.

4. По способности само-устанавливаться: несамоустанавливающиеся и самоустанавливающиеся (сферические, допускающие угол перекоса внутреннего и наружного колец до 2–3 градусов).

5. По габаритным размерам: для каждого подшипника при одном и том же внутреннем диаметре имеются различные серии, отличающиеся несущей способностью подшипника, т. е. размерами колец и тел качения. В зависимости от размера наружного диаметра подшипника, серии подразделяются на сверхлегкие, легкие, средние и тяжелые. Подшипники качения одинаковой серии диаметров могут иметь различную серию по ширине. В зависимости от ширины подшипника серии бывают особо узкие, узкие, нормальные, широкие и особо широкие.

6. По конструктивным особенностям: с защитными шайбами, с упорным бортом на наружном кольце, с канавкой на наружном кольце, с составными кольцами и др.

2. Классификация подшипников качения

Классификация подшипников качения осуществляется на основе следующих признаков:

  • по виду тел качения: шариковые и роликовые. Последние, в свою очередь, подразделяются на следующие группы: с короткими и длинными цилиндрическими роликами; с витыми; с игольчатыми; с коническими и со сферическими роликами;
  • по типу воспринимаемой нагрузки: радиальные, радиально‑упорные, упорно‑радиальные, упорные и линейные;
  • по числу рядов тел качения: однорядные, двухрядные, многорядные;
  • по способности компенсировать перекосы валов : самоустанавливающиеся и несамоустанавливающиеся.

На рис. 2 приведены основные виды подшипников качения :

  • а) радиально‑упорный шариковый подшипник;
  • б) радиально‑упорный шариковый подшипник с четырёхточечным контактом;
  • в) самоустанавливающийся двухрядный радиальный шариковый подшипник;
  • д) радиальный шариковый подшипник для корпусных узлов;
  • е) радиальный роликовый подшипник
  • ж) радиально‑упорный (конический) роликовый подшипник;
  • з) самоустанавливающийся радиальный роликовый подшипник;
  • и) упорный роликовый подшипник;
  • к) самоустанавливающийся двухрядный радиальный роликовый подшипник с бочкообразными роликами (сферический);
  • л) упорный шариковый подшипник;
  • м) радиально‑упорный роликовый подшипник;
  • н) ролики и сепаратор упорного игольчатого подшипника.

В табл. 1 приведено сравнение подшипников качения по эксплуатационным характеристикам .

основные типы подшипников качения

основные типы подшипников качения

Рис. 2. Внешний вид и конструкция основных типов подшипников качения

Сравнение подшипников качения по эксплуатационным характеристикам

Табл. 1. Сравнение подшипников качения по эксплуатационным характеристикам: +++ – очень хорошо; ++ – хорошо; + – удовлетворительно; о – плохо; х – непригодно

Шарикоподшипник

В качестве тела, обеспечивающего покачивание, в этом типе деталей используются шарики, свободно перемещающиеся по дорожкам. Применяются для вращающихся конструкций, в которых не нужно сильное трение между двумя движущимися частями.

Описание

Узел состоит из 2 колец, изготовленных из стали. Вместе они образуют некое «ложе» для шариковых тел. При этом внутренняя часть устройства фиксируется на валу, а наружная – на опоре. При всей простоте конструкции, они широко распространены в промышленности.

Разновидности

Какие бывают типы подшипников с шариковыми телами, можно предположить исходя из общей классификации. Как и большинство деталей качения их разделяют на: радиальные, упорные и с 4-х точечным контактом. Особенность последних заключается в способности воспринимать нагрузку в двух направлениях оси или одновременную комбинированную и осевую с одной стороны.

Применение

Разные виды применяют в электродвигателях и различной бытовой технике, в станках для обработки дерева, в медицинском оборудовании, станочных шпинделях и насосах. Шариковые с 4-х точечным контактом широко распространены в редукторах.

Подшипники скольжения

Подшипники скольжения в корне отличаются от подшипников качения. Но задача их та же – обеспечить направление двух движущихся деталей или их опирание, передавая при этом все силы в деталях. Отличие состоит в том, что если в подшипниках качения работают тела качения – шарики и цилиндры, – то в подшипниках скольжения эту роль выполняют подвижные детали (планки, валы или цапфы). Они скользят по поверхности неподвижного элемента (полукольца или втулки). Благодаря подобному принципу скольжение элемента происходит между антифрикционным слоем подшипника и деталью, для которой он служит. Благодаря заложенной смазке, а также покрытию площадь контакта активно смазывается. Если же движение происходит радиально, подвижность обеспечивается за счет зазора между антифрикционным слоем и валом.

Подшипник скольжения

Различают много видов подшипников качения. Это и радиальные подшипники, и упорные, и полосы, полукольца, и многие другие варианты и конструкции. Они имеют ряд бесспорных преимуществ – бесшумная работа, способность выдерживать высоку нагрузку, при этом относительно медленно вращаться или колебаться. Кроме того, именно этот тип рекомендуется для работы в тяжелых условиях эксплуатации, когда наблюдается перепад температуры. За счет этих уникальных свойств подшипники скольжения применяются во всех сферах промышленности, особенно для деталей со стесненным пространством.

Материал деталей

Материалы подшипников качения назначаются с учетом высоких требований к твердости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, ШХ20СГ, ШХ20, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твердость колец и роликов обычно HRC 60. 65, а у шариков немного больше – HRC 62. 66, поскольку площадка контактного давления у шарика меньше.

Кольца, ролики или шарики при температурах работы до 100 градусов должны быть термически обработаны до твердости HRC 58-66 в зависимости от марки стали.

Сепараторы изготавливают из листовой стали, латуни, бронзы, дюралюминия, текстолита, полиамидов с различными уплотнителями. Пластмассовые сепараторы уменьшают величину инерционных нагрузок в подшипниках, дают возможность использовать упругие свойства пластмасс при монтаже тел качения.

Сепараторы, изготовленные из самосмазывающегося материала, служат источником твердой смазки. В качестве самосмазывающегося материала часто применяется аман. Его можно использовать для сепараторов обычных и высокоскоростных подшипников, работающих без жидкой смазки, при нормальных и повышенных температурах. Сепараторы из амана должны быть более массивны, чем обычные.

В зависимости от предъявляемых к подшипникам требований кольца и тела качения выпускаются и из других материалов. Так, для обеспечения повышенной коррозионной стойкости ряд подшипников изготовляют из коррозионностойкой стали. Для работы при высокой температуре подшипники выпускают из жаростойких материалов.

Крупногабаритные подшипники для лучшего восприятия ударных нагрузок изготавливаются из цементируемой хромоникелевой стали. Ряд подшипников выпускается из немагнитных и других материалов. Если подшипник используют для работы при повышенной температуре более 100 градусов, то для обеспечения стабилизации размеров детали подшипника подвергаются отпуску при более высокой температуре. При этом твердость деталей несколько снижается в зависимости от температуры отпуска.

Таблица размеров

Каталог шариковых подшипников по размерам призван помочь в поиске оптимального технического решения. Подбор подшипников по размерам, таблица которых содержит бесценную информацию о таких параметрах изделий, каковыми являются величина диаметра внутреннего (внешнего) кольца, ширина изделия и т. п. , обеспечивает не только правильный выбор комплектующих, но и быстрый подбор аналогов. Таким образом, можно утверждать, что использование таблицы размеров подшипников качения является достаточно важным фактором в обеспечении бесперебойности рабочего процесса.

И в заключение необходимо рассмотреть еще один немаловажный момент, касающийся срока службы подшипников. Существует несколько факторов, непосредственно влияющих на продолжительность эксплуатации этих изделий:

  1. Защищенность от негативного воздействия внешней среды.
  2. Усталостное разрушение металла, использованного для изготовления элементов узла и следующее за ним «крошение».
  3. Твердость и степень обработки подвижной конструкции.
  4. Применение установленных производителем типов и количества смазочных материалов.

Современные марки стали, в совокупности с высоким качеством исполнения, способны обеспечивать шарикоподшипникам возможность увеличения номинального ресурса, заявленного производителем. Единственными условиями такого продления являются контроль показателей контактных нагрузок и соблюдение нормативов технического обслуживания.

Магнитные опорные узлы

В отличие от других, такое устройство работает на принципе магнетической левитации. Это обеспечивает полную бесконтактность между двумя частями конструкции.

Описание

Элементы выполнены таким образом, что вал парит, не соприкасаясь с другими поверхностями. Для обеспечения надежной работы предусмотрено большое количество датчиков, координирующих все движения.

Разновидности

Выделяют две группы: активные и пассивные. В первый состав входит непосредственно подшипник и электронная система. Работа второй группы строится за счет присутствия постоянных магнитов. Они менее устойчивы, чем в случае с электронной системой контроля, поэтому применяются гораздо реже.

Применение

Использовать такие устройства можно в газовых центрифугах, турбомолекулярных насосах, в различных электромагнитных подвесах, в криогенной технике, в вакуумных приборах и других сложных механизмах.

Преимущества и недостатки

В качестве плюсов выделим износостойкость деталей и возможность их использования в агрессивной окружающей среде, в том числе в космосе. Минусы проявляются в нестабильности магнитного поля, из-за которого дополнительно в механизм встраиваются традиционные устройства качения или скольжения.

Роликовые подшипники и их разновидности

По своему строению эти опоры схожи с предыдущим типом, но вместо шариков здесь используется тело, по форме напоминающее ролик. Так прибор может принимать на себя более серьезную нагрузку.

Описание

Конструкция разработана таким образом, что она показывает стойкость к радиальному давлению, но при этом скорость прохождения ролика по дорожке ничуть не уступает шарикоподшипникам. Единственное, на что следует обратить внимание – осевая нагрузка. Чтобы сделать устройство более устойчивым к ней, элемент качения заменяют на конический.

Классифицируют этот тип по используемому телу. Отдельно выделяют:

  • • Цилиндрические.
  • • Конические.
  • • Игольчатые.
  • • Сферические.

Применение

Роликоподшипники часто используют в насосах, мощных редукторах, в железнодорожной промышленности и автопроме. Все виды роликовых подшипников в картинках представлены на сайте .

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий